
Coding 3 min read

Capturing screenshots with Chromium using
Python
Sometimes you need to take screenshots of the web and Chromium provides
an easy way to do that.

Author

Isaac Bythewood August 06, 2022

Chromium for a long time has provided a CLI for capturing web
screenshots. I've found myself recently needing a to do a lot of
this.

https://blog.bythewood.me/posts/tag/coding/

To start my script I import my deps, find Chromium, and setup my
base command. I've found that Chromium can be under two
different names, chromium and chromium-browser, depending on
your container OS so the path check helps with that.

This example also makes use of Django's default_storage
functionality to store files in the proper location making this work
with a variety of different storage options.

import distutils
import os
import subprocess
import uuid

from django.core.files.storage import default_storage

Get chromium path, it's sometimes chromium and sometimes chromium-brow
chromium = None
if distutils.spawn.find_executable("chromium"):
 chromium = "chromium"
elif distutils.spawn.find_executable("chromium-browser"):
 chromium = "chromium-browser"
else:
 raise Exception("Could not find chromium")

base_command = [
 chromium,
 "--headless",
 "--no-sandbox",
 "--use-gl=swiftshader",
 "--disable-gpu",
 "--disable-software-rasterizer",
 "--disable-dev-shm-usage",
 "--disable-crash-reporter",
 "--disable-extensions",
 "--disable-in-process-stack-traces",
 "--disable-logging",

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Note that I do use Chromium in a Docker container for this so I
have a flag that disables Chromium sandboxing since that's the
current recommended way of running Chromium inside Docker.
You should absolutely remove this flag if you aren't running
Chromium in a container.

I then make two helper functions for saving images to storage and
running our Chromium command, you can modify this to save to
the OS directly if you don't want to use Django's storage system.

 "--window-size=1280x720",
 "--hide-scrollbars",
]

31
32
33

def save_tempfile_to_storage(tempfilename, filename):
 """
 Saves the given tempfile to django default_storage.
 :param tempfilename: The tempfile we want to save
 :param filename: The storage location to save the file to
 """
 if default_storage.exists(filename):
 default_storage.delete(filename)
 default_storage.save(filename, open(tempfilename, "rb"))
 os.remove(tempfilename)

def run_chromium_command(command):
 """
 Runs the given chromium command and returns the stdout.
 :param command: The command to run
 """
 command = command.split()
 command = base_command + command
 subprocess.run(
 command, check=True, stdout=subprocess.DEVNULL, stderr=subproces
)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

Then create our two main functions for generating the actual
screenshots, one for generating from a URL and one from
generating from HTML directly. You'll also need to modify these
slightly if you don't want to use Django's storage system.

You can now import these two functions anywhere you want to
create a screenshot. As a quick example if you wanted to take a
screenshot of my blog you'd run:

def generate_screenshot_from_url(url, filename):
 """
 Generates a screenshot of the given url and saves it to the given ou
 file.
 :param url: The url to screenshot
 :param filename: The output file to save the screenshot to
 """
 tempfilename = f"{uuid.uuid4()}.png"
 run_chromium_command(f"--screenshot={tempfilename} {url}")
 save_tempfile_to_storage(tempfilename, filename)
 return default_storage.url(filename)

def generate_screenshot_from_html(html, filename):
 """
 Generates a screenshot of the given html and saves it to the given o
 file.
 :param html: The html to screenshot
 :param filename: The output file to save the screenshot to
 """
 tempfilename = f"{uuid.uuid4()}.html"
 with open(tempfilename, "w") as f:
 f.write(html)
 tempfilename_path = "file://" + os.path.join(os.getcwd(), tempfilena
 run_chromium_command(f"--screenshot={tempfilename} {tempfilename_pat
 save_tempfile_to_storage(tempfilename, filename)
 return default_storage.url(filename)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

As a bonus if you wanted to generate a PDF you can add another
function to do this very easily since Chromium supports CLI PDF
generation.

You'd run this the exact same way as the
generate_screenshot_from_url function.

That's all you need to generate screenshots and PDFs! I've found
this to be much more consistent than using the various
screenshot and PDF libraries available for Python, you also have a
lot of control over Chromium with it's many CLI switches.

from chromium import generate_screenshot_from_url

generate_screenshot_from_url("https://blog.bythewood.me/", "screenshots/

1
2
3

def generate_pdf_from_url(url, filename):
 """
 Generates a pdf of the given url and saves it to the given output fi
 :param url: The url to screenshot
 :param filename: The output file to save the screenshot to
 """
 tempfilename = f"{uuid.uuid4()}.pdf"
 run_chromium_command(f"--print-to-pdf-no-header --print-to-pdf={temp
 save_tempfile_to_storage(tempfilename, filename)
 return default_storage.url(filename)

1
2
3
4
5
6
7
8
9
10

https://peter.sh/experiments/chromium-command-line-switches/

