@ 3 min read
Running a simple Django website in Docker

Using Docker to run a simple production and development environments
with a few extras thrown in. Easily customized to your preferred language
or framework.

alpine:3.16

apk add --update --no-cache \

sqlite \

python3 py3-pip \

nodejs yarn \

chromium libstdc++ nss harfbuzz freetype font-noto font-noto-extra font-noto-emoji && \
pip install --upgrade pipenv

/app

Pipfile Pipfile.lock package.json yarn.lock /app/
yarn install &% pipenv install --system

yarn webpack:production && \
rm -rf node_modules && \
python3 manage.py collectstatic --noinput

addgroup -S -g 1008 app && \
adduser -5 -h /app -s /sbin/nologin -u 1000 -G app app && \
chown -R app:app /app

app:app

Author

i Isaac Bythewood May 14, 2022

Docker is a near perfect solution for having project portability
across a wide variety of host platforms. I use docker to run my
websites on both development computers and servers. For Django
my go to Dockerfile looks a little something like this.


https://blog.bythewood.me/posts/tag/webdev/

FROM alpine:3.16

RUN apk add --update --no-cache \
sqlite \
python3 py3-pip \
nodejs yarn \
chromium libstdc++ nss harfbuzz freetype font-noto font-noto-extr;
pip install pipenv

COPY Pipfile Pipfile.lock package.json yarn.lock /app/

RUN yarn install && pipenv install --system
COPY .

RUN yarn webpack:production && \
rm -rf node_modules && \
python3 manage.py collectstatic --noinput

RUN addgroup -S -g app && \
adduser -S -h /app -s /sbin/nologin -u -G app app && \
chown -R app:app /app

USER app:app




WORKDIR /app
VOLUME /data

EXPOSE

ENV DJANGO_SETTINGS_MODULE=project.settings.production

CMD ["gunicorn", "project.asgi:application", "-k", "uvicorn.workers.Uvi{

A few notes on my choices:

* This assumes you are just using an sqlite database but this can
easily scale into using PostgreSQL in coordination with docker-
compose

e Juse webpack to build all of my static files on all of my sites
hence why nodejs and yarn are included

® Chromium is used in most of my projects for generating PDFs
and screenshots, I've found it the most reliable and consistent
way of handling that functionality

¢ You'll need both gunicorn and uvicorn installed

You could remove Chromium and save ~400MB of space on a
roughly ~450MB image if you have no use for it. It is by far the
largest dependency here. I also often use docker-compose in
conjunction with this Dockerfile.




version: "3"

services:
web:
build:
volumes:
- /sxv/data/app/:/data/
ports:
- "8000:8000"

command: gunicorn analytics.asgi:application -k uvicorn.workers.Uviq
restart: unless-stopped
environment:

DJANGO_SETTINGS_MODULE: ${DJANGO_SETTINGS_MODULE}

This can be used directly in production pretty well however I do
put most of my websites behind Caddy using a reverse proxy. If
you'd like to see my most up-to-date alpine-docker files you can
check them out on my overshard/dockerfiles GitHub project.



https://github.com/overshard/dockerfiles

