
Webdev 3 min read

Running a simple Django website in Docker
Using Docker to run a simple production and development environments
with a few extras thrown in. Easily customized to your preferred language
or framework.

Author

Isaac Bythewood May 14, 2022

Docker is a near perfect solution for having project portability
across a wide variety of host platforms. I use docker to run my
websites on both development computers and servers. For Django
my go to Dockerfile looks a little something like this.

https://blog.bythewood.me/posts/tag/webdev/

django
#
I use this to run most of my django projects in a single container in
production. If you wish to seriously reduce the size of this image and
don't need it you can remove the chromium line. I use it for screensho
pdf creation.
#
Make sure to change the below ENV variables to fit your needs and the
path to your applications asgi file.
#
You can run this with:
docker build --tag overshard/django:latest .
docker run -d -p 80:8000 -e DJANGO_SETTINGS_MODULE=project.settings
-v /srv/data:/data django:latest

FROM alpine:3.16

RUN apk add --update --no-cache \
 sqlite \
 python3 py3-pip \
 nodejs yarn \
 chromium libstdc++ nss harfbuzz freetype font-noto font-noto-extra
 pip install pipenv

COPY Pipfile Pipfile.lock package.json yarn.lock /app/

RUN yarn install && pipenv install --system

COPY . .

RUN yarn webpack:production && \
 rm -rf node_modules && \
 python3 manage.py collectstatic --noinput

RUN addgroup -S -g 1000 app && \
 adduser -S -h /app -s /sbin/nologin -u 1000 -G app app && \
 chown -R app:app /app

USER app:app

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

A few notes on my choices:

This assumes you are just using an sqlite database but this can
easily scale into using PostgreSQL in coordination with docker-
compose
I use webpack to build all of my static files on all of my sites
hence why nodejs and yarn are included
Chromium is used in most of my projects for generating PDFs
and screenshots, I've found it the most reliable and consistent
way of handling that functionality
You'll need both gunicorn and uvicorn installed

You could remove Chromium and save ~400MB of space on a
roughly ~450MB image if you have no use for it. It is by far the
largest dependency here. I also often use docker-compose in
conjunction with this Dockerfile.

WORKDIR /app

VOLUME /data

EXPOSE 8000

ENV DJANGO_SETTINGS_MODULE=project.settings.production

CMD ["gunicorn", "project.asgi:application", "-k", "uvicorn.workers.Uvic

41
42
43
44
45
46
47
48
49
50

django
#
I create a `.env` file in the same folder as my `Dockerfile` and
`docker-compose.yml` file with the environmental variables below. Gene
server file struction is `/srv/git/app` for the git bare repository,
`/srv/docker/app` for the git repo cloned from the bare repo, and
`/srv/data/app` for the data directory mounted to the container.
#
The ports are `8000:8000` because I often use Caddy or Nginx to revers

1
2
3
4
5
6
7
8
9

This can be used directly in production pretty well however I do
put most of my websites behind Caddy using a reverse proxy. If
you'd like to see my most up-to-date alpine-docker files you can
check them out on my overshard/dockerfiles GitHub project.

to the container. You could probably just serve the app directly thoug
`8000:80` instead if you have no media files.

version: "3"

services:
 web:
 build: .
 volumes:
 - /srv/data/app/:/data/
 ports:
 - "8000:8000"
 command: gunicorn analytics.asgi:application -k uvicorn.workers.Uvic
 restart: unless-stopped
 environment:
 DJANGO_SETTINGS_MODULE: ${DJANGO_SETTINGS_MODULE}

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

https://github.com/overshard/dockerfiles

